Multi-Agent Systems
Naas implements sophisticated multi-agent systems that enable complex AI workflows through collaborative problem-solving, distributed reasoning, and coordinated tool usage. This section covers advanced patterns for building agent networks that scale from simple interactions to enterprise-grade orchestration.
Agent Collaboration Patterns
Multi-agent systems in Naas follow established patterns that enable agents to work together effectively:
Three core collaboration patterns:
- Orchestration: Central coordinator delegates tasks to specialized agents
- Peer-to-Peer: Agents collaborate directly through shared state and communication
- Pipeline: Sequential processing with handoffs between specialized stages
Hierarchical Delegation
Complex tasks decomposed using agent hierarchies:
class OrchestratorAgent(Agent):
"""
High-level agent that coordinates workflows by delegating
to specialized sub-agents.
"""
def __init__(self):
self.data_analyst = create_data_analysis_agent()
self.visualization_agent = create_visualization_agent()
self.reporting_agent = create_reporting_agent()
super().__init__(
name="Workflow Orchestrator",
agents=[self.data_analyst, self.visualization_agent, self.reporting_agent]
)
async def execute_workflow(self, requirements):
"""Coordinate analytical workflow across agents."""
# Step 1: Data Analysis
analysis = await self.call_agent("data_analyst", {
"data_sources": requirements["data_sources"],
"analysis_type": requirements.get("analysis_type")
})
# Step 2: Visualization
charts = await self.call_agent("visualization_agent", {
"data": analysis["data"],
"chart_types": requirements["visualizations"]
})
# Step 3: Report Generation
report = await self.call_agent("reporting_agent", {
"analysis": analysis["insights"],
"visualizations": charts["charts"],
"format": requirements["report_format"]
})
return {
"status": "completed",
"results": report,
"agents_used": ["data_analyst", "visualization_agent", "reporting_agent"]
}
Parallel Processing
Independent tasks executed concurrently for improved performance:
class ParallelAgentProcessor:
"""Manages parallel execution of multiple agents."""
def __init__(self, max_concurrent: int = 5):
self.max_concurrent = max_concurrent
self.semaphore = asyncio.Semaphore(max_concurrent)
async def process_parallel_tasks(self, tasks):
"""Execute multiple agent tasks concurrently."""
async def execute_task(task):
async with self.semaphore:
agent = self.get_agent_instance(task["agent_name"])
return await agent.process_async(task["inputs"])
# Execute all tasks concurrently
results = await asyncio.gather(
*[execute_task(task) for task in tasks],
return_exceptions=True
)
return self.process_results(tasks, results)
# Example: Business Intelligence Workflow
async def business_intelligence_analysis(data_requirements):
processor = ParallelAgentProcessor()
parallel_tasks = [
{
"agent_name": "sales_agent",
"inputs": {"metrics": ["revenue", "conversion"], "period": "Q4"}
},
{
"agent_name": "marketing_agent",
"inputs": {"metrics": ["cac", "ltv"], "campaigns": "all"}
},
{
"agent_name": "finance_agent",
"inputs": {"analysis": "profitability", "breakdown": ["product", "region"]}
}
]
return await processor.process_parallel_tasks(parallel_tasks)
Consensus and Validation
Multiple agents provide validation for critical decisions:
class ConsensusAgent(Agent):
"""Coordinates multiple agents to reach consensus."""
def __init__(self, validator_agents, consensus_threshold=0.75):
self.validators = validator_agents
self.threshold = consensus_threshold
super().__init__(name="Consensus Coordinator", agents=validator_agents)
async def validate_decision(self, proposal):
"""Get consensus from multiple agents on a proposal."""
# Submit to all validators
validations = await asyncio.gather(*[
self.get_validation(validator, proposal)
for validator in self.validators
])
# Calculate consensus
votes = [v["confidence"] for v in validations if "confidence" in v]
avg_confidence = sum(votes) / len(votes) if votes else 0
return {
"consensus": avg_confidence >= self.threshold,
"confidence": avg_confidence,
"validator_responses": validations,
"recommendation": self.generate_recommendation(avg_confidence)
}
async def get_validation(self, agent, proposal):
"""Get validation from single agent."""
prompt = f"Evaluate this proposal and provide confidence (0-1): {proposal}"
response = await agent.process_async(prompt)
return self.parse_validation_response(response)
Communication Protocols
Structured communication ensures reliable agent coordination:
Communication methods:
- Message Passing: Direct agent-to-agent communication
- Shared State: Common data structures for coordination
- Event-Driven: Reactive communication based on system events
- Request-Response: Synchronous interactions for immediate feedback
Scaling Considerations
Horizontal Scaling
Distribute agent workloads across multiple instances:
class AgentPool:
"""Manages pool of agent instances for load distribution."""
def __init__(self, agent_factory, pool_size=10):
self.agents = [agent_factory() for _ in range(pool_size)]
self.current = 0
def get_agent(self):
agent = self.agents[self.current]
self.current = (self.current + 1) % len(self.agents)
return agent
async def process_request(self, request):
agent = self.get_agent()
return await agent.process_async(request)
Performance Monitoring
Track multi-agent system performance:
class MultiAgentMonitor:
"""Monitor performance across agent networks."""
def __init__(self):
self.metrics = {}
self.coordination_overhead = 0
def track_workflow(self, workflow_id, agents_used, execution_time):
"""Track multi-agent workflow performance."""
self.metrics[workflow_id] = {
"agents": agents_used,
"duration": execution_time,
"coordination_time": self.coordination_overhead,
"efficiency": self.calculate_efficiency(agents_used, execution_time)
}
def get_performance_report(self):
"""Generate performance analysis."""
return {
"total_workflows": len(self.metrics),
"avg_agents_per_workflow": self.avg_agents_used(),
"avg_execution_time": self.avg_execution_time(),
"coordination_overhead": self.avg_coordination_overhead(),
"efficiency_trends": self.analyze_efficiency_trends()
}
Integration with Foundation
Multi-agent systems build on the LangGraph foundation covered in previous sections:
- Architecture Overview: Platform architecture and component relationships
- LangGraph Foundation: Core state management and workflow patterns
- Tool Integration: How agents access external systems and data
This multi-agent architecture enables Naas to handle complex enterprise scenarios requiring coordination between multiple AI systems while maintaining reliability, scalability, and clear accountability.